

From Macro- to Nanoplastics and Beyond:

Advances in Analytical Techniques

Milica Velimirović Fanfani

We are VITO - An independent research institute focused on accelerating the transition to a sustainable world

In 2023

1296 employees 61 nationalities 268M€ revenues **25** patents/year

277

publications

11/3 11 sites on 3 continents

ANALYTICAL LABORATORY

TEAM GOAL

R&D 9

POST-DOC 1

PHD 2

vito.be

#30

Detailed characterization of plastic debris: A case study of the Sea Scheldt estuary

anchor netting

Distributions of the number of items and weight in grams of items collected per million m³ of water, by size, at the four locations

Science of The Total Environment Volume 851, Part 1, 10 December 2022, 158226

What can we learn from studying plastic debris in the Sea Scheldt estuary?

Milica Velimirovic^{a b 1}, Bert Teunkens^{c 1}, Hossein Ghorbanfekr^b, Bart Buelens^b, Tom Hermans^d Stefan Van Damme^c, Kristof Tirez^b, Frank Vanhaecke^a % 🖾

From Macro to Mesoplastics characterization

Remedies: Sampling campaign in Albania March 17th 2024 - methodology

Hamallaj Beach, Albania

REMEDIES

Remedies: Mesoplastics – morphology and color

Percentage of different colors of mesoplastics present in different plastics morphologies – foam, fragment and filament (n=73)

Maximum diameter (mm) of mesoplastics (n=73)

Polymer composition (%) of mesoplastics (n=73)

Remedies: Mesoplastics – elemental fingerprint

Detected elements in mesoplastics (n=73)

spICP-MS for Microplastics Characterization

spICP-MS for low µm range MPs (1-10 µm) size determination

Particle size distribution obtained for 2.5 µm and 5 µm polystyrene (PS) microspheres measured using ICP-MS operated in single-event mode via the monitoring of 13C⁺.

JAAS		C ROYAL SOCIETY OF CHEMISTRY
COMMUNICAT	ON	View Article Online View Journal View Issue
Check for updates Cite this: J. Anal. At. Spectrom, 2020, 35, 455	Detection of microplastic coupled plasma-mass spe operated in single-event	cs using inductively ectrometry (ICP-MS) mode
Received 9th November 2019 Accepted 4th December 2019 DOI: 10.1039/c9ja00379q	Eduardo Bolea-Fernandez, 🕲 † Ana Rua- Kristof Tirez 🕲 b and Frank Vanhaecke 🕲 *	Ibarz, ©†ª Milica Velimirovic, <mark>©</mark> ª ^b ≋

fwo

12ZD120N

<u><u></u></u> GHENT

UNIVERSITY

A_ams

Ti particle size distribution

Velimirovic et al., 2022 - SETAC Europe 32nd Annual Meeting

From Micro to Nanoplastics characterization

Simulated UV weathering of disposable plastic face masks

Cost action PRIORITY: Simulated UV weathering of disposable plastic face masks

DPFMs

- Disposable surgical mask, Type II
- 3 layered
- Confirmed filtration BFE≥98% according to EN14683 Standard

$DPFM + H_{2}O$

One mask was inserted into a glass jar, filled with 300 mL of ultrapure H₂O.

System and procedural blanks were obtained to control any contamination

UV chamber

- Jars were inserted into simulating chambers for certain time intervals.
- Every 4h of aging, the media was stirred gently with a glass rod.
- Twice a day, UP H₂O was added to keep the volume of 300mL stable (evaporation).

Completion of weathering

After the completion of the required weathering period, the masks were carefully removed from the aqueous media and left in clean filter paper to dry in RT (fume hood).

Cost action PRIORITY: Simulated UV weathering of disposable plastic face masks

Cost action PRIORITY: Simulated UV weathering of disposable plastic face masks

Nanoplastics release from face masks under simulated UV weathering

Cost action PRIORITY: Accelerated UV weathering of disposable plastic face masks

Simple and straightforward separation of the nanoplastics after accelerated UV degradation of surgical face masks.

From Micro to Nanoplastics characterization

Washing water of PET and recycled PET textile

From Micro to Nanoplastics characterization

92 nm polystyrene spiked fish samples

Wyatt FFF system

Analytical and Bioanalytical Chemistry https://doi.org/10.1007/s00216-022-04321-y

TRENDS

Church for

Finding the tiny plastic needle in the haystack: how field flow fractionation can help to analyze nanoplastics in food

Katrin Loeschner¹ - Janja Vidmar² - Nanna B. Hartmann³ - André Marcel Bienfait⁴ - Milica Velimirovic^{5,6}

GA: 101023205

From Micro to Nanoplastics characterization

Sewage sludge

Pyr-GC-MS method as a powerful tool for nanoplastics detection

ΊΤΟ

From Nanoplastics and Beyond

a Fast Screening using Ambient Pressure Ionization

Ambient ionization-high resolution mass spectrometer DART – Thermo Q Exactive

- From macro to nanoplastics, size dictates complexity: As plastics degrade, their physical and chemical behaviors shift—altering how they interact with organisms and ecosystems. This makes size-resolved analysis not just valuable, but essential.
- It all starts with the sample: Robust and standardized sample preparation needed.
- Analytical tools are evolving: Cutting-edge techniques like µRaman spectroscopy, pyrolysis-GC-MS, and atomic force microscopy (AFM) are expanding our ability to detect, characterize, and quantify plastics.
- A glimpse of the future: Emerging methods are now turning toward the detection of chemical additives and degradation products in environemnt that may pose hidden risks.

Xiaoyu Zhang

Géraldine Dumont Artem Glukharev

Nina Ainali

Siebe Lievens

Kristof Tirez

milica.velimirovic@vito.be

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or granting authority. Neither the European Union nor the granting authority can be held responsible for them.